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ABSTRACT

DUAL MODE CONTROL

by

Leonidas M. Mantgiaris

Adviser: Robert Staffin

Submitted in partial fulfillment of the requirements

for the degree of Master of Science (Electrical Engineering)

The purpose of this report is to achieve a simple compensation scheme for

the control of a process. The criteria are that the process output closely spproximate

the process input when the latter is a step and that there be no steady state error.

The reference process chosen is that of chemical concentration control.

Employing a compensation block with pure gain given a fast response that

has a steady-state error. Integral compensation eliminates the steady-state error,

but its response has a very sluggish transient character. A switching arrangemant

is evolved that combines the desirable characteristics of both types of compensation*

while removing the unwanted traits.

This configuration is set up on an analog computer and compound results

which satisfy the original criteria are empiracally dbtained for a plant of three poles.

This is done for plants of two poles and one pole with equal success, exhibiting the

validity of the technique for a general plant.
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L Consideration of An Actual Process:

The example chosen is that of a chemical processing problem involving
concentration control. The object is to describe a physical system and

evolve its transfer function so that the subject matter covered in this report

is immediately applicable to a real situation.

The main component in the concentration control problem is the

mixing tank:

Xi riIN AGITATOR/ ,

Xoro OUT

Fig. I - Mixing Tank

The input to tank (X.) is given in pounds of dissolved substance per gallon

of mixture. The mixture is allowed to flow into the tank at the rate of r.1
gallons per minute. The concentration uniformity is maintained by agitators.

The output of the tank is similarily measured in pounds of substance per

gallon of mixture, flowing out at the rate of r0 gallons per minute.

Since the amount of substance added to the tank (AQ) during any time

interval is the amount entering minus the amount leaving over that same

time interval, b is given by

AQ = xiri At - x 0 r0 At, assuming xi, x 0 , rig ro, are constant

over At. (1)

then,

AQ(t).= xilt) ri(t) - xo(t) ro(t). 
(2)

Taking the At -. W t I - is obtained. This is the instantaneous

rate of change of the amount of substance in the tank at any time t. But,

x (t) is the output concentration or simply the amount of substance Q(t) in the
0

tank at any timeA t divided by the volume (v(t)) of mixture in the tank.



Therefore

dQ(t) = xi(t) ri(t) - Q(t) ro(t) (3)

Transpos ing,

S dQ(t) +Q(t)d + IvU - r e(t) = xi(t) ri(t)" (4)

If the rates in and out are made constant and equal, the volume B is also a

constant. This results in
r

dQ(t) + a Qt) . r xi(t), whu re a = +l r 0 , rj v lare
I constants. v I

The La Place Transform of equation 5 is

Q(.) [.+ a] rirX i(s). (6)

r.Or, Q(s} _ zI
A~x -= (7)

Equation 7 is the transfer function for a perfectly mixed vessel. Thus, the

mixing tank can be represented as follows (in block diagram form):

xi5) 0- 1

Fig. 2 - Block Diagram of Mixing Tank

Since X (s) = a.s) , two identical tanks in series can be represented as:
0 

I

Xi W O" rit/v"o"• XO's|I)o rit/vo -'0 0(s
X *(S•jj00aes)

Fig. 3 - Block Diagram of two Series Mixdng Tanks

To obtain a general pneumatic valve transfer function, consider the

diagram of figure 4.
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PIITON .__.AIR PRESSURE

SPRING 01PACKING

00

Fig. 4 - Pneumatic Value

Air pressure holds a piston against a restoring spring, thus positioning a gate

which determines the flow rate. Summing the forces acting on the value for a

given vertical displacement (y), one obtains:

+ Fd-L + Ky P(t) A. whore P(t) is the pressure on the (8)
odt dt piston am a function of time, A is

the area of the piston head, K is

the spring constant, F is the viscous

damping (due principally to the pack-

ing of the gate shaft) and M is the

mass of the gate and shaft assembly.

Normally, the F dy term is much larger than the Md - term, partly

rdf at

because the damping coefficient F is larger than the nra se M and partly because

the acceleration is quite low. The se considerations allow the following

approximation:

S4- + Ky = P(t)A. (9)

dt

or, F - y a A P(t), where A is called the valve constant and

"K dt K K

F the valve time constant. (10)
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The La Place Transform of Equation 10 yields:

Yi+(+K S + l= A P(s) (11)

Y(s) A/K

P(s) l+SF/K . (12)

Usually, the output of the control valve is fed into a mixing valve.

Here the substance and perhaps a solvent are combined. Assuming that the

amount of substance per gallon of mixture is small or that the rate of mixture

flow is independently held constant, then the control valve position is seen

@to directly determine the concentration of the mixing valve combination:

A where Xi(s) is the concentration of the

* P(s) I + S(F/K) mixture and A' is a compound (13)

constant.

Consider a system composed of a control valve, a mixing valve, and two

identical tanks arrangedas shown in figure 5:

FMIXING VALVE

PNEUMATICCONTROL.

•SET POINT

i ~SENSOR"
SCONTROLLER*

Fig. 5 - Chemical System

The configuration shows the inclusion of a return loop as a means of automati-

cally controlling the concentration. The path consists of a sensing element,

a controller - whose transfer function is given by

G(s)a Ks +K' +K" , (14)

and an output which varies about a reference concentration input (called the

set point).

5 sm .. ...



Representing the chemical system in block diagram form:

SKKnA! X1iI (5 1 F-V- XOUJ) r1i/, OUTPUT X0 0 (sI

• MI XING
VALVES • ON

T STPOINT

0 Fig. 6 - Chemical System in Block Diagram Form

II. Statement of the Problem:

Observing that the input to the system is the set point, figure 6 is

simplified by selecting values for the constants and combining the blocks of

the chemical process:

rM { I 1 0s+ )scit I

CONTRLLER PROCESS

Fig. 7 - Generalized System

Focusing attention on the return loop, it is emphasized that feedback

0 is an excellent method for controlling a system process. Normally, the

process can be represented by its frequency domain poles and zeroes together

with a scale factor. The basic behavior of a system is determined by the

roots of its transfer function denominator. These poles form the fundamental

terms for a partial fraction expansion. Once the expansion is known in the

frequency domain, the time domain behavior is specified for any given input

I.'
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via the inverse La Place Transform.

The controlling block incorporated in the forward path usually contains

a variable gain. Changing the value of this gain produces corresponding

variations in the location of the overall system's pole-zero locations. This

in turn changes the characterization of the system perfornance. For

given process poles and zeroes, the Root Locus Technique is a useful tool

for establishing a relationship between closed loop singularity positions and

variation in forward path gain.

Assuming that the controller is a variable gain only and sketching the

resulting pole-zero pattern (see fig. 8), a few desirable step responses are

then calculated for particular values of gain (see fig. 9). These responses

would be adequate, were it not desired that the output should exactly follow
the input in steady state. This cannot occur with this system.

The overall transfer function is:

CM k Z now, applying the final value (15)
rA) kl + (s+l)(s+10) theorem (with the input a unit

step):

C(t OD) lim $ 21
0-. o k1+(+u+10)J (16)

k I

100 + kI This cannot be l for a stable system. (17)

This leads to the consideration of a controller transfer function with

a variable gain multiplied by an integrating 1 term. The overall transfer

function here is:

c(t) k 2
2r(t) k2 +0(8+1)(8+l0) .Applying the final value theorem (18)

again (the input still a unit step):

c (t100)- Urn [ k9)

8s-0o kz+s(s+l)(s+l0)2J

1. . This is unity independent of k2 . (20)

If the criterion for the system is merely that it have no error in steady

state response to a step drive, the integrator with variable gain serves nicely.I
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Fig. 8 - Mode 1 Pole-Zero Plot

=:.4

INPUT

Fig. 9 - Mode 1 Step Responses

!05."
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However, if the constraint of a speedy transient'response is added, this

system is no longer satisfactory.

From the pole-zero pattern of the system with integral compensation

(mee Fig. 10), it is seen that the system behaves as a dominant second

order system. This is so since both the time constants and the residues

associated with the pole pair deep in the left half plane are much smaller

than those of the pair of poles closest to the origin. With the system de-

signed for a moderate peak in step response, the timi- constant of the

dominant poles is seen to be on the order of 3 seconds. Looking back to

the straight gain compensation scheme, it too is seen to approximate a

second order system. However its transient time constants are seen to

be approximately . 5 seconds. That the difference between 3 and . 5 is

significant is brought out by the fact that time constants expressed in hours

are not unusual when dealing with chemical systems. In the generalized

block diagram under consideration, all time constants are normalized to

be given in seconds.

\ /
\ /
\ /
\ /

/\
/ 0-CLOSED LOOP POSITO

Fig. 10 - Mode Z Pole - Zero plot

1 e
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With this motivatioh in mind, a switching arrangement is envisaged

in an attempt to gain the desirable characteristics of both controller block

settings while .eliminating their unattractive aspects:

0I

K,"

Fig. 11. - Switching arrangement e

At this point it is necessary to note that a fast errorless system can

be achieved thru the use of ordinary, existing compensation method s. The

approach offered here however, has the advantages of simplicity, low cost,
and versatility while remaining extendable to non-linear devices.

I1. Exnerimental Solution of the Problem: (A.)
O=

The overal system is to be designed as combinations of switch position

I (mode I ) and switch position 2 (mode 2). This investigation is most easily
carried out by instrumenting the entire problem on an analog computer.

Regarding the block diagram of Fig. 11, one of the first difficulties *

that arrises is that a step discontinuity in value will occur at the wiper of

the switch when it is changed from position I to position 2. This effective

step input at the time of switching occurs because the output of the straight

gain is not the same value as the output of the integrator. This difficulty is
circumvented in the instrumentation of the compensation block on the analog

computer (Fig. 12 is the entire program). Here R" and C" are chosen so
that their parallel combination approximates a pure gain, while switching out

R" and Rt2 obviously yields the integrator with its own gain value. It is

noted that conversion from one to the other yields no discontinuity in voltage
appearing across the capacitor. However, discontinuities in derivatives of

the voltage remain as a possibility.

1. .. ........ .... ....
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SR"

tz IM cooIr--

+1000LV4($A

37 .1 0 .|VO

t Is 9 L , I

COMPENSATION LEG 3 2CSANALOG •• V IT
RECORDER

Fig. 12 - Analog Computer let-up

NOTE: Time constants have been multiplied by 10 so as to be commensurate

with the recording devices used.

1

For the R" C" combination, the transfer function is For

1 RKS<< this becomes ".- Alternately, to force this to follow a stop quickly,

it it desired that be as large as possible. The value of limits the
I

approximation of a pure gain. In this instrumentation w in limited to 40.

The tirm for switching is determined by visualiy following the output as dim-
* played on a recorder and throwing a toggle switch when a desired level is reached.

After executing a few runs with randomly -selected switching points, a pattern becomes
evident; switching early produces large overshoots while switching late yields ' under
shoots* . A few more experimental attempts with the above pattern as a guide quickly

* yields intermediate responses which do incorporate the best features of both systems;
those of being fast, errorless, and close approximations of the input drives (these

results are sumrmariaed in Fig. 13).II.
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V

Performing similar series of runs for different mode I peak heights corro-

borates the results given above. A beat switching point and resultant response is
readily obtainable by trial and error for each setting of the mode I peak height.

These curves are given in figures 14 thru 20. In Addition to the input and the re-
sponse of both modes, two arbitrary bounding responses, together with a best re-

sponse (dashed line) is indicated. The area between the bounding responses is

shaded to underline the fact that these responses form a continuous, monotonic,

non-intersecting spectrum of responses for monotonic changes in switching tinms.

The fact that the overall system converges rapidly (experimentally) to a suitable

response is underscored by the unsophisticated switching criteria and techniques

used. Finally, the optimal responses are obtained when the peak for mode 1 occurs

near (and especially below) the reference input. This is so since it is observed that

the overall response is coincident with mode I's step response (almost until the

latter's peak). Afterwards it either continues upward, flattens out just above the

first system's peak, or heads back down. For a step-like output, a sharp corner

is desired. Therefore, a mode I peak is designed which will allow the compound

response to flatten out at its steady state value. Obviously, a mode I peak Just below

the steady state reference is desirable (see figures 17 and 18). Raising the peak

much above reference will force the overall response to have a large peak because

of the "coincident" property (see figures 19 and 20). Lowering the peak a good deal

below reference causes the overall output to lose its corner, forcing it to become
S~greatly rounded (see figures 14, 15 and 16}.

B. Investigating the generality of the techniques, a plant with two poles is

considered.

0d cml SUMMER COMPENSATION AS IN FIG. 12

22

287

"CHNOES SIGN

Fig. Zi - Block Diagram and Computer Set-up for Two Poles
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Sketching the pole-zero plots for the two systems:

A
MODE I MODE 2

I i _ __4

-I -

BECOMES UNSTABLE FOR K2 ? 2

Fig. 22 - Mode I and Mode 2 Pole-Zero Plots for Two Pole@

The statements made and the plots observed for the overall system involv-
ing a plant with three poles are found to be characteristic also of a plant with two
poles. This is easily seen from a typical family of curves for a particular first
and second system (both adjusted to behave as dominant second order systems):

INPUT ST PM D

4d

2-

I F

MODE 2

Fig. 23 -Responses ror Two P0169
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r. Abandoning the constraint of dominant second order individual system be-

havior, a plant with a simple pole is approached:

i e -SUMMER

r(t c(t) COMPENSATION AS IN FG. 12

k22 .2 .25
T 

.2L2

Fig. 24 - Block Diagram and Computer Set-up for One Pole

Sketching the pole-zero plots for the individual system:

MODE I COALESCENCE

Fig. 25 - Mode I and Mode 2 Pole-Zero Plots for One Pole

Here again the characterization previously given to the overall systems
continues to be evident. Similar switching criteria can quickly be experimentally
determined to yield overall responses that are Mike in nature to those gotten
with the previous plants (of course the first system cannot peak higher than the
input stop as was possible before and is step-like in shape). A sample run suffices
to show the applicability of the technique in this situation:

to show th

IL •



I

19

2
3

INPUT E
MOOD 2 STEP RESPONSE

6 .MODE I STEP RESPONSE

SWITCHINGJ 4POINTS t3 2

S Fig. 26 - Responses for One Pole

Thus, the technique appears to be applicable to a great many plants (which
can be thought of as being conbinations of the plants considered here).

IV. Permutation of the Configuration:

It is of interest to note that a permutation of plant and compensation relative
to the previous forward path produces an overall response of entirely different

characteristics. This statement holds for all the plants previously investigated.
Though the plant is no longer the system output and is therefore not the object of
control any longer, it is desired to justify the nature of this new response. The
following configuration yields the set of curves illustrated in fig. 28:

- c M
Fig. Z7 - Block I4P'hm, and Computer Set Up For Permutation

4,



20

S~INPUT

j FAST SYSTEM

SLOW SYSTEM-- DENOTES SWITCH FROM
FAST TO SLOW SYSTEM

Fig. 28 - Responses for Permutatibn

These plots are characteristic of the responses obtained with the plants of
Z and 3 poles. Thus, the permutation is seen to yield compound results which plot

as if mode 2 is merely responding to a step drive which to smaller than the actual
input by the value that the switch occurs at. That this response does not follow
the patterns established for the previous permutation is not disturbing.

Consider the following dual-mode system along 4,ith its permuted partner:

fit) PLANT cit) f ) PLANT c

Is' PERMUTATION 
2 nd. PERMUTATION.

Fig. 29 - Block Diagram of Permutations

i0



22S~In both cases k2 is taken = O. The 1st permutation responds to the initial

conditions present just before the switching takes place, while the 2nd immediately

goes to zero (though the plant does not). It is also observed that the steady state

plant behavior is radically different; the lot permutation's plant going to zero and

the 2nd' s responding directly to a step input. The feedback further complicates

the total non-linearity by insuring that the two errors (e(t))are different, magnifying

the difference in the outputs.

Mathematically the forward path is always subject to the following input-out-

put relationships:

+ (D) c(t) = kt c(t) before switching (21)

+ (D) c(t) = k2 E(t) after switching (k 2 = 0) (22)

I (D) is a polynomial derivative operator gotten from

the denominator of the plant transfer function.

Examining the second equation, the following possibilities arise:

I. c(t) is the homogeneous solution of the differential equation (taking into

account the initial conditions).

2. c(t) and all its derivatives are immediately and always zero (this is the

often forgotten trivial solution).

But which aolution is correct ? This question cannot be answered without
the use of the additional physical constraint of the circuit permutation. Obviously,

possibility I corresponds to the physical constraint of the let permutation. Simi-

larly permutation 2 is constraint enough to force the trivial solution (possibility 2).

Now allowing K2 to be a non-zero constant and considering the sanm equation,

these new possibilities are apparent:

I. The equation is solved in the ordinary way using the initial conditions

prior to sw atchinr - allswint only the highest order deriativc of h(t) to be dis-

continuous across the switch.

2. The instantaneous change of all derivative value s of c(t) by a factor of

K K2 and the solution of the differential equation using these new conditions.

Again only reference to as additional constraint, can indicate which eolution

is acceptable. Once this is done, possibilities I and 2 match perasutations 1 and 2

respectively.
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Thus, consideration of the dual mode system has shown that two entirely diff-

erent solutions of the differential equation can be expected. Their applicability is

dependent upon the physical requirements of the configuration. Changing Kz to

an integrator(Kz )merely increases the order of +(D):

D. +(D) c(t) = KZ t(t) after switching.

Again,feedback further changes the output by modifying the input differently

for such permutation.

Finally,to underscore this difference in overall results, the following two

circuits are considered:

- PLANT I PLANT

# GO) 00_______________

Fig. 30 - Completed Permutations

Q(t) and Q (t) are impulses, doublets, triplets, etc. of proper magnitudes
which would match all values and derivatives over the switch. It is fairly obvious
that the results will still be divergent. This is so since the compensation can be
considered one block whose transfer function is time variant (with no radical
changes in velue or derivatives at the output of the block). It is a readily corro-

borated fact that a block diagram with time -dependent nombers cannot be permuted

without disturbing the result,

V. A Consequent Techniaue:

A technique which holds much promise is the following. aubstitutiag a ramp
input for the step drive, the same compensation scheme as before is employed with

any of the three previous plants. The object is to see if the ovyrall system can
follow the input. The motivation for this is that if a system can reasonably fOlIOw
a randomly sloped ramp input, it will do well in Mad~owing a coaplotely a&bitary

C
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input. Figure 11 is again taken to be the black diagram under consideration (with

v(t) - Kt).

Placing the switch in position 1 yields a system whose output will cause the

error to increase without bound for a ramp input. This is readily seen from an

application of the final value theorem:

c(t)= r(t)-c(t) (Z3) and, c(t)= co) ={S R(s)[l - T(s)]}. (ZS) ; R(s) = K(-)(28)
r(t lc (t)1 (24) +S2

17FT 4 F(5+1)(S+l )2

•Ls+lxlS+lO)Z + K 1  (z6)

(27)

Since the output is to follow the input, this increase in error is intolerable.
Switching to position 2 and observing a typical error signal (steady state):

C(t = =D) to R(s)[" - T(s)]1 s-&o (Z9)

= K S(S+l)(S+lIu•) ]
] 'S+)[+1)+K 2JJ. (30)

(31)

Here it is seen that the ,error in steady state is finite. Thus. the output
will tend to follow the input in stuady state. The height' of the output is always

lOOK less than the corresponding input.

Now, the technique consists of the following: Tin first system is designed to
be unstable. The second system is designed to minimize the finite steady state

e rror. The input is applied with the switch in position 1. The output begins to

fly off to infinity (see Fig. 31).

However, before it can radically diverge from the input, the switch Is set
to position Z. The constraint of the second system is to bring the output (in steady

state) to a value lOOK less than the input. Even before this occurs, the switch is

set back to position 1 and the process is again repeated. In this manner the com-

pound output can be maintained oscillating about the input, well 'within the bounds of

+ lOOK . In fact it is readily seen that very narrow tolerance levels can easily

be observed with a more sophisticated switching system and criterion.
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Z4

X-INDICATES
/ W-H2 ""/ ' TOLERANCE BAND

2 A"YSTATE OUTPUoT.

K2

Fig. 31 Response to Technique

One of the interesting aspects of this problem, is to see if a switch operator

can wlearn" to control the behavior of the overall system. Thus, this problem can

conceivably aid in an investigation of the learning process. In chemical processes,

operators are known to be able to control complex processes which behave similar

to the systems studied here, except that variations in the output occur over a

matter of hours.

Unfortunately, stability problems, saturating amplifiers and the crude

switching and measuring techniques used preclude a thorough investigation of this

problem. For the case described, the difficulties above prevent the constraining

of the output to a very narrow tolerance band, the transients (after each switch)

far exceediig those limi &s. Time limits the restatement of the problem in more

workable terms. It is mentioned here bedause of its extremely interesting aspects.

VI. Conclusion:

The employment of two simple compensation blocks and a switching arrange-

ment has yielded a configuration whose outputs are very good approximations to

the step inputs considered. Further, these results have been easily achieved using

empirical techniques and have been shown to be independent of the plant chosen.

I, e g ea ". . . . .
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